The overview of the spin physics at RHIC-PHENIX experiment

Yoshinori Fukao Kyoto Univ./RIKEN for the PHENIX collaboration

- University of São Paulo, São Paulo, Brazil
- Academia Sinica, Taipei 11529, China
- China Institute of Atomic Energy (CIAE), Beijing, P. R. China
- · Peking University, Beijing, P. R. China
- Charles University, Faculty of Mathematics and Physics, Ke Karlovu 3, 12116 Prague, Czech Republic
- Czech Technical University, Faculty of Nuclear Sciences and Physical Engineering, Brehova 7, 11519 Prague, Czech Republic
- Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 182 21 Prague, Czech Republic
- Laboratoire de Physique Corpusculaire (LPC), Universite de Clermont-Ferrand, 63 170 Aubiere, Clermont-Ferrand, France
- Dapnia, CEA Saclay, Bat. 703, F-91191 Gif-sur-Yvette, France
- IPN-Orsay, Universite Paris Sud, CNRS-IN2P3, BP1, F-91406 Orsay, France
- Laboratoire Leprince-Ringuet, Ecole Polytechnique, CNRS-IN2P3, Rout Saclay, F-91128 Palaiseau, France
- SUBATECH, Ecòle des Mines at Nantes, F-44307 Nantes France
- University of Muenster, Muenster, Germany
- KFKI Research Institute for Particle and Nuclear Physics at the Hungari Academy of Sciences (MTA KFKI RMKI), Budapest, Hungary
- Debrecen University, Debrecen, Hungary
- Eövös Loránd University (ELTE), Budapest, Hungary
- Banaras Hindu University, Banaras, India
- Bhabha Atomic Research Centre (BARC), Bombay, India
- · Weizmann Institute, Rehovot, 76100, Israel
- Center for Nuclear Study (CNS-Tokyo), University of Tokyo, Tanashi, Tokyo 188, Japan
- Hiroshima University, Higashi-Hiroshima 739, Japan
- Ibaraki 305-0801, Japan
- Kyoto University, Kyoto, Japan
- Nagasaki Institute of Applied Science, Nagasaki-shi, Nagasaki, Japan
- RIKEN, The Institute of Physical and Chemical Research, Wako, Saitama 351-
- RIKEN BNL Research Center, Japan, located at BNL
- Physics Department, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima, Tokyo 171-8501, Japan
- Tokyo Institute of Technology, Oh-okayama, Meguro, Tokyo 152-8551, Japan
- University of Tsukuba, 1-1-1 Tennodai, Tsukuba-shi Ibaraki-ken 305-8577, Japan
- Waseda University, Tokyo, Japan
- Cyclotron Application Laboratory, KAERI, Seoul, South Korea
- Kangnung National University, Kangnung 210-702, South Korea
- Korea University, Seoul, 136-701, Korea
- Myong Ji University, Yongin City 449-728, Korea
- System Electronics Laboratory, Seoul National University, Seoul, South
- Yonsei University, Seoul 120-749, Korea
- IHEP (Protvino), State Research Center of Russian Federation "Institute for High Energy Physics", Protvino 142281, Russia
- Joint Institute for Nuclear Research (JINR-Dubna), Dubna, Russia
- Kurchatov Institute, Moscow, Russia
- PNPI, Petersburg Nuclear Physics Institute, Gatchina, Leningrad region, 188300, Russia
- · Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Vorob'evy Gory, Moscow 119992, Russia
- Saint-Petersburg State Polytechnical Univiversity, Politechnicheskayastr, 29, St. Petersburg, 195251, Russia

Hiroshima University, Higashi-Hiroshima 739, Japan KEK - High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, 13 Countries; 62 Institutions; 550 Participants*

- Lund University, Lund, Sweden
- Abilene Christian University, Abilene, Texas, USA
- Brookhaven National Laboratory (BNL), Upton, NY 11973, USA
- University of California Riverside (UCR), Riverside, CA 92521, USA
- University of Colorado, Boulder, CO, USA
- Columbia University, Nevis Laboratories, Irvington, NY 10533, USA
- Florida Institute of Technology, Melbourne, FL 32901, USA
- Florida State University (FSU), Tallahassee, FL 32306, USA
- Georgia State University (GSU), Atlanta, GA, 30303, USA
- University of Illinois Urbana-Champaign, Urbana-Champaign, IL, USA
- Iowa State University (ISU) and Ames Laboratory, Ames, IA 50011, USA
- Los Alamos National Laboratory (LANL), Los Alamos, NM 87545, USA
- Lawrence Livermore National Laboratory (LLNL), Livermore, CA 94550, USA
- University of New Mexico, Albuquerque, New Mexico, USA
- New Mexico State University, Las Cruces, New Mexico, USA
- Department of Chemistry, State University of New York at Stony Brook (USB), Stony Brook, NY 11794, USA
- Department of Physics and Astronomy, State University of New York at Stony Brook (USB), Stony Brook, NY 11794, USA
- Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831, USA
- University of Tennessee (UT), Knoxville, TN 37996, USA
- Vanderbilt University, Nashville, TN 37235, USA

*as of March 2005

Contents

- > Physics motivation
 - Gluon polarization in proton
 - Single transverse-spin asymmetry
 - W physics for polarized anti-quark distribution.
- > RHIC-PHENIX experiment
- > Local Polarimeter
- > Relative Luminosity
- > Physics Results
 - Neutral pion
 - Direct photon
 - "Jet"
 - Charged hadrons
 - Other topics
- > PHENIX in the future
- > Summary

Spin Physics at RHIC-PHENIX

How much does gluon spin align to proton spin?

$$\Delta g(x) = g_{+}^{+}(x) - g_{+}^{-}(x)$$

 $g_{+}^{+(-)}(x)$: Probability to detect spin+ (spin-) gluon in spin+ proton as a function of Bjorken x.

Proton structure, especially spin structure, is still unknown.

Shine a light on the gluon polarization Δg

Spin Physics at RHIC-PHENIX How to measure Δg

Measure All in $\vec{p} \vec{p} \rightarrow X$ production.

X: Pions Direct photon J/ψ Any hadrons

$$A_{LL} = \frac{\sigma_{++} - \sigma_{+-}}{\sigma_{++} + \sigma_{+-}}$$

Spin Physics at RHIC-PHENIX Single Transverse Spin Asymmetry

Left - right asymmetry by transversely polarized beam.

$$AN = \frac{1}{\sin(\phi)} \frac{\sigma(\phi) - \sigma(\phi - \pi)}{\sigma(\phi) + \sigma(\phi - \pi)}$$

Several approaches are suggested. (Collins effect, Sivers effect, Twist-3...)

- AN of pions is measured by many experiment. (E704, STAR, BRAHMS)
- > An of pion, neutron is measured by PHENIX

Spin Physics at RHIC-PHENIX Anti-quark distribution ($\Delta \overline{q}$) with W

W coupling is flavor sensitive.

 $(u\overline{d} \rightarrow W^+, \overline{u}d \rightarrow W^-)$

---> Anti-quark distribution can be extracted.

The operation with $\sqrt{s} = 500 \text{ GeV}$ is planned in the future. (Currently basic setup is 200 GeV)

Measure parity violating AL.

$$AL(W^{+}) = \frac{\Delta u \cdot \overline{d} - \Delta \overline{d} \cdot u}{\Delta u \cdot \overline{d} + \Delta \overline{d} \cdot u}$$

$$AL(W^{-}) = \frac{\Delta d \cdot \overline{u} - \Delta \overline{u} \cdot d}{\Delta d \cdot \overline{u} + \Delta \overline{u} \cdot d}$$

RHIC

RHIC

PHENIX

Beam-Beam-Counter & Zero Degree Counter

> BBC : 3.0 < $|\eta|$ < 3.9

> ZDC : $|\eta| > 6.6 (\theta > 2.8 \text{mrad})$

> Minmum Bias Trigger (BBC)

> Relative Luminosity (BBC&ZDC)

> Local Polarimeter (ZDC)

> Physics : Neutron (ZDC)

Central Arm

 $> |\eta| < 0.35$, $\Delta \phi = \pi$

> EMCal, RICH, Tracker

> Physics : π° , photon, charged hadrons, electron.

Muon Arm

 $> 1.2 < |\eta| < 2.4$

> Muon Idetifier, Muon Tracker.

> Physics : muon, J/ψ, W

PHENIX

Beam-Beam-Counter & Zero Degree Counter

> BBC : 3.0 < $|\eta|$ < 3.9

> ZDC : $|\eta| > 6.6 (\theta > 2.8 \text{mrad})$

> Minmum Bias Trigger (BBC)

> Relative Luminosity (BBC&ZDC)

> Local Polarimeter (ZDC)

> Physics : Neutron (ZDC)

Central Arm

 $> |\eta| < 0.35$, $\Delta \phi = \pi$

> Tracker, RICH, EMCal

> Physics : π° , photon, charged hadrons, electron

Muon Arm

 $> 1.2 < |\eta| < 2.4$

> Muon Tracker, Muon Idetifier

> Physics : muon, J/ψ, W

Luminosity & History

2001-2002 transverse spin run (First polarized proton run)

2003 longitudinal spin run

2004 commissioning run (longitudinal spin)

2005 longitudinal spin run (w/ short transverse spin run)

FOM : Figure of merit = P^4L

We had first long longitudinal spin run in 2005.

Figure of merit is 40 times larger than past years.

Local Polarimeter

Measure An of neutron in very foward region.

Rotator OFF Clear asymmetry is measured.

Local Polarimeter

Measure An of neutron in very foward region.

Rotator ON Asymmetry disapears.

Longitudinal component > 98%

Relative Luminosity

$$\mathsf{ALL} = \frac{1}{P \cdot P} \ \frac{N_{++} - RN_{+-}}{N_{++} + RN_{+-}} \quad R = \frac{L_{++}}{L_{+-}}$$

P: Beam polarization

N : Number of measured particles

R: Relative Luminosity

Events detected by BBC are used. Absolute scale is not necessary.

Systematic uncertainty evaluation

> Compare two detector with different acceptance.

- BBC : $3.0 < |\eta| < 3.9$

- ZDC : $|\eta| > 6.6 \ (\theta < 2.8 \ \text{mrad})$

$$r(i) = \frac{N_{ZDC}(i)}{N_{BBC}(i)}$$
 should be constant.
(i : crossing number)

Relative Luminosity

Compare two rel. lum. detectors : BBC vs. ZDC

$$r(i) = \frac{N_{\text{ZDC}}(i)}{N_{\text{BBC}}(i)}$$
 should be constant. (i : crossing number)

Fit r(i) to $C[1+\alpha P_B(i)P_Y(i)]$: α is possible asymmetry.

$$\frac{\delta A_{LL}}{2 P_B P_Y} = \frac{\delta \alpha}{P_B P_Y}$$

After renormalization by chisquare,

- a) $\delta R = 1.0 \times 10^{-4}$
- b) $\delta A_{LL} = 2.3 \times 10^4$ for 47% beam polarization
- c) All of BBC relative to ZDC is consistent with 0

PHENIX results - neutral pion

- > Clean measurement by fine segmented EMCal. $(\Delta \eta \cong \Delta \phi \cong 0.01)$
- > High statistics
- > pQCD calculation describes the data well. (cross section)

PHENIX results - neutral pion

- > Clean measurement by fine segmented EMCal. $(\Delta \eta \cong \Delta \phi \cong 0.01)$
- > High statistics
- > pQCD calculation describes -0.02 the data well. (cross section) -0.04

PHENIX results - neutral pion

Statistical error becomes much smaller.

GRSV-std and GRSV-max can be distinguished.

---> K. Boyle's talk in section III.4

> Clean measurement by fine segmented EMCal. $(\Delta \eta \cong \Delta \phi \cong 0.01)$

- > High statistics
- > pQCD calculation describes -0.02 the data well. (cross section) -0.04

PHENX results - Direct photon

10

p_⊤[GeV/c]

Spectra (Subtraction)

- > Independent from fragmentaion.
- > Sensitive to sign of Δg
- > Low statistics
- > Theory describes data well at pT>5 GeV/c

PHENIX results - "Jet"

"Jet" detection

Tag one high energy photon and sum energy of nearby photons/charged particles.

Definition of "pT cone" Sum of pT measured by EMCal & Tracker with $R = \sqrt{|\phi|^2 + |\eta|^2} < 0.3$

Real pt of jet is evaluated by modified PYTHIA.

PHENIX results - "Jet"

"Jet" detection

Tag one high energy photon and sum energy of nearby photons/charged particles.

Definition of "pT cone" Sum of pT measured by EMCal & Tracker with $R = \sqrt{|\phi|^2 + |\eta|^2} < 0.3$

Real pt of jet is evaluated by modified PYTHIA.

PHENIX results - An of pions

Large asymmetry is observed in forward region. (E704, STAR...)

PHENIX measured An of charged hadrons and pions in central region.

Results of charged pion from 2005 run.

---> K. Eyser's talk in section III.7

Other topics

- > Single electron, D
 - Tagging charm quark for Δg
- $> J/\psi$
 - Production mechanism
 - All for Δg
 - ---> M. Liu's talk in section III.4
- > µ
 - AN
 - ---> H. Bataineh in poster session
 - ---> A. Purwar in poster session

- > Helicity correlated differences in Jet kt
 - This may suggest evidence of orbital angular momentum.
 - ---> R. Hobbs's talk in section III.6
- > An of Jet kt
 - Access to Sivers function
- > **η**
 - All for polarized PDFs
 - ---> J. Seele in poster session
- $> \Lambda$
 - Spin transfer
 - All for polarized PDFs

RHIC-PHENIX in the future

- > Silicon Vertex Tracker
 - 2 pixel layer + 2 strip layer
 - Wider acceptance for Jet
 - Displaced vertex measurement for heavy flaver tagging.
- > Muon Trigger Upgrade
 - For W -> μ measurement at \sqrt{s} = 500 GeV
 - Resistive Plate Chamber (Timing, Momentum)
- > Toward $\sqrt{s} = 500 \text{ GeV}$
 - 410 GeV commissioning in 2005
 - We observed neutron asymmetry at $\sqrt{s} = 410$ GeV.

Summary

- > PHENIX just has taken first long longitudinal-spin polarized-proton collision data in Run-5 (2005). ---> 40 times more statistics in figure of merit for All.
- $> \Delta g$ measurement
 - GRSV-std and GRSV-max can be distinguished by ALL in π° production.
 - The study of other channel is on going.
- > Many other works in hard effort
 - Single transverse-spin asymmetry
 - Spin correlation in Jet kt
 - Production mechanism
- > Toward $\sqrt{s} = 500 \text{ GeV run}$
 - RHIC successfully operated polarized proton run at $\sqrt{s} = 410$ GeV.
 - PHENIX Local Polarimeter measured An of neutron at \sqrt{s} = 410 GeV.

Spin Physics at RHIC-PHENIX How to measure Δg

In the experiment, we calculate

$$\mathsf{ALL} = \frac{1}{P \cdot P} \; \frac{N_{++} - RN_{+-}}{N_{++} + RN_{+-}} \qquad R = \frac{L_{++}}{L_{+-}}$$

N: Number of particle measured in each helicity state.

P: Beam polarization.

R: Relative Luminosity

Polarimeter

proton-Carbon polarimeter

Polarized proton gas jet polarimeter

PHENIX results - Jet correlation

We may observe net effect after averaging over impact factor.

PHENIX results - Jet correlation

PHENIX result - J/psi

